Deep Learning-Based Liver Vessel Segmentation

Abstract: Liver vessel segmentation in computed tomography represents a highly challenging task due to the imbalanced distribution within the liver parenchyma, the small and branched vessels with decreased image contrast to surrounding tissue and in general, due to the scarcity of highresolution and -contrast images, which hampers the efficient training of deep learning-based approaches. This study applies two state-of-the-art networks, the fully convolutional nnUnet and the transformer-based VT-Unet to three publicly available datasets, 3DIRCADb, one task of the Medical Segmentation Decathlon (MSD) and the more recent LiVS dataset. The nnUnet achieved Dice scores of 0.761, 0.714, and 0.696 on the 3DIRCADb, LiVS, and MSD datasets, respectively. In contrast, the experiments with the VT-UNet resulted in Dice scores of 0.795, 0.713, and 0.610. These findings indicates good accordance of the performance of the nnUnet and the transformer-based VT-Unet, with differences regarding individual datasets. Both network variants show competitive performances regarding the current state-of-the-art, yet the need for large-scale and high-quality datasets becomes evident to further enhance the accuracy of liver vessel segmentation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Deep Learning-Based Liver Vessel Segmentation ; volume:10 ; number:1 ; year:2024 ; pages:29-32 ; extent:4
Current directions in biomedical engineering ; 10, Heft 1 (2024), 29-32 (gesamt 4)

Urheber
Hille, Georg
Jahangir, Tameem
Hürtgen, Janine
Kreher, Rober
Saalfeld, Sylvia

DOI
10.1515/cdbme-2024-0108
URN
urn:nbn:de:101:1-2409161535264.040282074105
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:34 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Hille, Georg
  • Jahangir, Tameem
  • Hürtgen, Janine
  • Kreher, Rober
  • Saalfeld, Sylvia

Ähnliche Objekte (12)