Weighted composition operators on Hardy–Smirnov spaces

Abstract: Operators of type f → ψf ◦ φ acting on function spaces are called weighted composition operators. If the weight function ψ is the constant function 1, then they are called composition operators. We consider weighted composition operators acting on Hardy–Smirnov spaces and prove that their unitarily invariant properties are reducible to the study of weighted composition operators on the classical Hardy space over a disc. We give examples of such results, for instance proving that Forelli’s theorem saying that the isometries of non–Hilbert Hardy spaces over the unit disc need to be special weighted composition operators extends to all non–Hilbert Hardy–Smirnov spaces. A thorough study of boundedness of weighted composition operators is performed.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Weighted composition operators on Hardy–Smirnov spaces ; volume:9 ; number:1 ; year:2022 ; pages:160-176 ; extent:17
Concrete operators ; 9, Heft 1 (2022), 160-176 (gesamt 17)

Urheber
Matache, Valentin

DOI
10.1515/conop-2022-0136
URN
urn:nbn:de:101:1-2022120913173693202833
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:39 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Matache, Valentin

Ähnliche Objekte (12)