Statistics in diagnostic medicine

Abstract: This tutorial gives an introduction into statistical methods for diagnostic medicine. The validity of a diagnostic test can be assessed using sensitivity and specificity which are defined for a binary diagnostic test with known reference or gold standard. As an example we use Procalcitonin with a cut off value ≥ 0.5 g/L as a test and Sepsis-2 criteria as a reference standard for the diagnosis of sepsis. Next likelihood ratios are introduced which combine the information given by sensitivity and specificity. For these measures the construction of confidence intervals is demonstrated. Then, we introduce predictive values using Bayes’ theorem. Predictive values are sometimes difficult to communicate. This can be improved using natural frequencies which are applied to our example. Procalcitonin is actually a continuous biomarker, hence we introduce the use of receiver operator curves (ROC) and the area under the curve (AUC). Finally we discuss sample size estimation for diagnostic studies. In order to show how to apply these concepts in practice we explain how to use the freely available software R.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Statistics in diagnostic medicine ; volume:60 ; number:6 ; year:2022 ; pages:801-807 ; extent:07
Clinical chemistry and laboratory medicine ; 60, Heft 6 (2022), 801-807 (gesamt 07)

Urheber

DOI
10.1515/cclm-2022-0225
URN
urn:nbn:de:101:1-2022062013002595130036
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:28 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)