Discontinuous Petrov–Galerkin Approximation of Eigenvalue Problems

Abstract: In this paper, the discontinuous Petrov–Galerkin approximation of the Laplace eigenvalue problem is discussed. We consider in particular the primal and ultraweak formulations of the problem and prove the convergence together with a priori error estimates. Moreover, we propose two possible error estimators and perform the corresponding a posteriori error analysis. The theoretical results are confirmed numerically, and it is shown that the error estimators can be used to design an optimally convergent adaptive scheme.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Discontinuous Petrov–Galerkin Approximation of Eigenvalue Problems ; volume:23 ; number:1 ; year:2023 ; pages:1-17 ; extent:17
Computational methods in applied mathematics ; 23, Heft 1 (2023), 1-17 (gesamt 17)

Creator
Bertrand, Fleurianne
Boffi, Daniele
Schneider, Henrik

DOI
10.1515/cmam-2022-0069
URN
urn:nbn:de:101:1-2023010713240010889892
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bertrand, Fleurianne
  • Boffi, Daniele
  • Schneider, Henrik

Other Objects (12)