Discontinuous Petrov–Galerkin Approximation of Eigenvalue Problems
Abstract: In this paper, the discontinuous Petrov–Galerkin approximation of the Laplace eigenvalue problem is discussed. We consider in particular the primal and ultraweak formulations of the problem and prove the convergence together with a priori error estimates. Moreover, we propose two possible error estimators and perform the corresponding a posteriori error analysis. The theoretical results are confirmed numerically, and it is shown that the error estimators can be used to design an optimally convergent adaptive scheme.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Discontinuous Petrov–Galerkin Approximation of Eigenvalue Problems ; volume:23 ; number:1 ; year:2023 ; pages:1-17 ; extent:17
Computational methods in applied mathematics ; 23, Heft 1 (2023), 1-17 (gesamt 17)
- Creator
-
Bertrand, Fleurianne
Boffi, Daniele
Schneider, Henrik
- DOI
-
10.1515/cmam-2022-0069
- URN
-
urn:nbn:de:101:1-2023010713240010889892
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:22 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bertrand, Fleurianne
- Boffi, Daniele
- Schneider, Henrik