Efficient two‐scale simulations of microstructured materials using deep material networks

Abstract: Deep material networks (DMN) are a promising piece of technology for accelerating concurrent multiscale simulations. DMNs are identified by linear elastic pre‐computations on representative volume elements, and serve as high‐fidelity surrogates for full‐field simulations on microstructures with inelastic constituents. The offline training phase is independent of the online evaluation, such that a pre‐trained DMN may be applied for varying material behavior of the constituents. In this contribution, we investigate a two‐scale component simulation of industrial complexity accelerated by DMNs. To this end, a DMN is solved implicitly at every Gauss point to include the microstructure information into the macro simulation.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Efficient two‐scale simulations of microstructured materials using deep material networks ; volume:21 ; number:1 ; year:2021 ; extent:2
Proceedings in applied mathematics and mechanics ; 21, Heft 1 (2021) (gesamt 2)

Urheber
Gajek, Sebastian
Schneider, Matti
Böhlke, Thomas

DOI
10.1002/pamm.202100069
URN
urn:nbn:de:101:1-2021121514285091100779
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:37 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Gajek, Sebastian
  • Schneider, Matti
  • Böhlke, Thomas

Ähnliche Objekte (12)