Scaling of Neural‐Network Quantum States for Time Evolution

Simulating quantum many‐body dynamics on classical computers is a challenging problem due to the exponential growth of the Hilbert space. Artificial neural networks have recently been introduced as a new tool to approximate quantum many‐body states. The variational power of the restricted Boltzmann machine quantum states and different shallow and deep neural autoregressive quantum states to simulate the global quench dynamics of a non‐integrable quantum Ising chain is benchmarked. It is found that the number of parameters required to represent the quantum state at a given accuracy increases exponentially in time. The growth rate is only slightly affected by the network architecture over a wide range of different design choices: shallow and deep networks, small and large filter sizes, dilated and normal convolutions, and with and without shortcut connections.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Scaling of Neural‐Network Quantum States for Time Evolution ; day:07 ; month:01 ; year:2022 ; extent:18
Physica status solidi / B. B, Basic solid state physics ; (07.01.2022) (gesamt 18)

Urheber
Lin, Sheng-Hsuan
Pollmann, Frank

DOI
10.1002/pssb.202100172
URN
urn:nbn:de:101:1-2022010814005346742141
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:32 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Lin, Sheng-Hsuan
  • Pollmann, Frank

Ähnliche Objekte (12)