Solutions for the Problems Involving Fractional Laplacian and Indefinite Potentials
Abstract: In this paper, we consider a class of Schrödinger equations involving fractional Laplacian and indefinite potentials. By modifying the definition of the Nehari–Pankov manifold, we prove the existence and asymptotic behavior of least energy solutions. As the fractional Laplacian is nonlocal, when the bottom of the potentials contains more than one isolated components, the least energy solutions may localize near all the isolated components simultaneously. This phenomenon is different from the Laplacian.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Solutions for the Problems Involving Fractional Laplacian and Indefinite Potentials ; volume:17 ; number:3 ; year:2017 ; pages:551-579 ; extent:29
Advanced nonlinear studies ; 17, Heft 3 (2017), 551-579 (gesamt 29)
- Creator
-
Tang, Zhongwei
Wang, Lushun
- DOI
-
10.1515/ans-2016-6015
- URN
-
urn:nbn:de:101:1-2405031555437.048434597407
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:44 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Tang, Zhongwei
- Wang, Lushun