Solutions for the Problems Involving Fractional Laplacian and Indefinite Potentials

Abstract: In this paper, we consider a class of Schrödinger equations involving fractional Laplacian and indefinite potentials. By modifying the definition of the Nehari–Pankov manifold, we prove the existence and asymptotic behavior of least energy solutions. As the fractional Laplacian is nonlocal, when the bottom of the potentials contains more than one isolated components, the least energy solutions may localize near all the isolated components simultaneously. This phenomenon is different from the Laplacian.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Solutions for the Problems Involving Fractional Laplacian and Indefinite Potentials ; volume:17 ; number:3 ; year:2017 ; pages:551-579 ; extent:29
Advanced nonlinear studies ; 17, Heft 3 (2017), 551-579 (gesamt 29)

Creator
Tang, Zhongwei
Wang, Lushun

DOI
10.1515/ans-2016-6015
URN
urn:nbn:de:101:1-2405031555437.048434597407
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:44 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Tang, Zhongwei
  • Wang, Lushun

Other Objects (12)