Endoplasmic Reticular Stress and Pathogenesis of Experimental Colitis: Mechanism of Action of 5-Amino Salicylic Acid

Abstract: Objectives: Inflammatory bowel diseases which are characterized by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway are commonly treated with 5-amino salicylic acid (5-ASA). The objective of this study was to investigate the role of 5-amino salicylic acid in the UPR-signaling pathway in experimental colitis. Materials and Methods: Colitis was induced in male Sprague-Dawley rats by intrarectal instillation of trinitrobenzene sulfonic acid. Animals received 5-amino salicylic acid (100 mg/kg body weight) 2 h before the induction of colitis and repeated daily until day 7. The animals were sacrificed on day 7 and tissues were collected for analysis. Results: The expression of protein kinase R (PKR)-like ER kinase (PERK), a mediator of UPR signaling increased significantly (p < 0.05), while inositol-requiring enzyme type-1 (IRE1) and the CCAAT/enhancer-binding homologous protein (CHOP) remained unaltered in the inflamed colon. The expression of glucose-regulated protein-78, activator of transcription factor-4, and phosphorylated-eukaryotic initiation factor-2α (eIF2αP) increased (p < 0.05) in the inflamed colon. However, the levels of eIF2α protein and mRNA expression remained unchanged. Myeloperoxidase activity, colon weight, and infiltration of inflammatory cells increased significantly (p < 0.05) in the submucosa whereas the body weight decreased. These changes were significantly inhibited by 5-amino salicylate treatment. Conclusion: These findings suggest that the anti-inflammatory properties of 5-amino salicylic acid are mediated through the inhibition of the PERK signaling pathway. Objectives: Inflammatory bowel diseases which are characterized by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway are commonly treated with 5-amino salicylic acid (5-ASA). The objective of this study was to investigate the role of 5-amino salicylic acid in the UPR-signaling pathway in experimental colitis. Materials and Methods: Colitis was induced in male Sprague-Dawley rats by intrarectal instillation of trinitrobenzene sulfonic acid. Animals received 5-amino salicylic acid (100 mg/kg body weight) 2 h before the induction of colitis and repeated daily until day 7. The animals were sacrificed on day 7 and tissues were collected for analysis. Results: The expression of protein kinase R (PKR)-like ER kinase (PERK), a mediator of UPR signaling increased significantly (p < 0.05), while inositol-requiring enzyme type-1 (IRE1) and the CCAAT/enhancer-binding homologous protein (CHOP) remained unaltered in the inflamed colon. The expression of glucose-regulated protein-78, activator of transcription factor-4, and phosphorylated-eukaryotic initiation factor-2α (eIF2αP) increased (p < 0.05) in the inflamed colon. However, the levels of eIF2α protein and mRNA expression remained unchanged. Myeloperoxidase activity, colon weight, and infiltration of inflammatory cells increased significantly (p < 0.05) in the submucosa whereas the body weight decreased. These changes were significantly inhibited by 5-amino salicylate treatment. Conclusion: These findings suggest that the anti-inflammatory properties of 5-amino salicylic acid are mediated through the inhibition of the PERK signaling pathway. Objectives: Inflammatory bowel diseases which are characterized by endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) signaling pathway are commonly treated with 5-amino salicylic acid (5-ASA). The objective of this study was to investigate the role of 5-amino salicylic acid in the UPR-signaling pathway in experimental colitis. Materials and Methods: Colitis was induced in male Sprague-Dawley rats by intrarectal instillation of trinitrobenzene sulfonic acid. Animals received 5-amino salicylic acid (100 mg/kg body weight) 2 h before the induction of colitis and repeated daily until day 7. The animals were sacrificed on day 7 and tissues were collected for analysis. Results: The expression of protein kinase R (PKR)-like ER kinase (PERK), a mediator of UPR signaling increased significantly (p < 0.05), while inositol-requiring enzyme type-1 (IRE1) and the CCAAT/enhancer-binding homologous protein (CHOP) remained unaltered in the inflamed colon. The expression of glucose-regulated protein-78, activator of transcription factor-4, and phosphorylated-eukaryotic initiation factor-2α (eIF2αP) increased (p < 0.05) in the inflamed colon. However, the levels of eIF2α protein and mRNA expression remained unchanged. Myeloperoxidase activity, colon weight, and infiltration of inflammatory cells increased significantly (p < 0.05) in the submucosa whereas the body weight decreased. These changes were significantly inhibited by 5-amino salicylate treatment. Conclusion: These findings suggest that the anti-inflammatory properties of 5-amino salicylic acid are mediated through the inhibition of the PERK signaling pathway.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Endoplasmic Reticular Stress and Pathogenesis of Experimental Colitis: Mechanism of Action of 5-Amino Salicylic Acid ; volume:34 ; number:1 ; year:2024 ; pages:39-47 ; extent:9
Medical principles and practice ; 34, Heft 1 (2024), 39-47 (gesamt 9)

Creator
Baydoun, Zahraa A.
Rao, Muddanna
Khan, Islam

DOI
10.1159/000541791
URN
urn:nbn:de:101:1-2502171754121.873688506082
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:23 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Baydoun, Zahraa A.
  • Rao, Muddanna
  • Khan, Islam

Other Objects (12)