PREDICTING VEGETATION ATTRIBUTES WITH NEURAL NETWORKS AND SENTINEL-1 & 2

Abstract. Evidence suggests that plant traits, plant functional diversity, and species diversity are linked to ecosystem functions to different extents. However, these relationships are sometimes inconsistent because of the presence of environmental gradients (e.g. climate, topography, land use) and scale mismatches between sampling units and landscape processes. Relationships between satellite data and vegetation parameters seem to be also case-specific, which hinders the creation of generalizable models. We have built predictive models of structural parameters and species composition across a broad range of climatic and topoedaphic conditions and management practices across grasslands and forests in Germany. For that, we use Sentinel multitemporal imagery and neural networks. Our models manage to explain 50% of the data variability for structural parameters, show high stability, and can generalize well across environmental gradients and sites. We also found that prediction models of biodiversity parameters show lower predictive capabilities. Spatially continuous models of grassland and forest attributes provide vital information on ecosystem functions at landscape scale. Thus, they can contribute to studying the feedback mechanisms between biodiversity, ecosystem functions, and land management at the scales to which ecological processes occur.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
PREDICTING VEGETATION ATTRIBUTES WITH NEURAL NETWORKS AND SENTINEL-1 & 2 ; volume:XLIII-B3-2022 ; year:2022 ; pages:945-950 ; extent:6
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B3-2022 (2022), 945-950 (gesamt 6)

Urheber
Muro Martin, Javier
Linstädter, A.
Männer, F. A.
Schwarz, L.-M.
Hoffmann, J.
Dubovyk, O.

DOI
10.5194/isprs-archives-XLIII-B3-2022-945-2022
URN
urn:nbn:de:101:1-2022060205393806960864
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:33 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)