Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Machine learning approach using 18F-FDG-PET-radiomic features and the visibility of right ventricle 18F-FDG uptake for predicting clinical events in patients with cardiac sarcoidosis ; day:16 ; month:3 ; year:2024 ; pages:1-9
Japanese journal of radiology ; (16.3.2024), 1-9
- Creator
-
Nakajo, Masatoyo
Hirahara, Daisuke
Jinguji, Megumi
Ojima, Satoko
Hirahara, Mitsuho
Tani, Atsushi
Takumi, Koji
Kamimura, Kiyohisa
Ohishi, Mitsuru
Yoshiura, Takashi
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1007/s11604-024-01546-y
- URN
-
urn:nbn:de:101:1-2405210712050.743293209024
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:54 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Nakajo, Masatoyo
- Hirahara, Daisuke
- Jinguji, Megumi
- Ojima, Satoko
- Hirahara, Mitsuho
- Tani, Atsushi
- Takumi, Koji
- Kamimura, Kiyohisa
- Ohishi, Mitsuru
- Yoshiura, Takashi
- SpringerLink (Online service)