Collection article | Sammelwerksbeitrag

Effect Comparison in Multilevel Structural Equation Models with Non-Metric Outcomes

This study discusses difficulties of effect comparisons in multilevel structural equation models with non-metric outcomes, such as nonlinear dyadic mixed-effects regression. In these models, the fixation of the level-1 error variances induces substantial drawbacks in the context of effect comparisons which align with the well-known problems of standard single- and multilevel nonlinear models. Specifically, the level-1 and level-2 coefficients as well as the level-2 variance components are implicitly rescaled by the amount of unobserved level-1 residual variation and thus may apparently differ across (and within) equations despite of true effect equality. Against this background, the present study discusses a multilevel extension of the method proposed by Sobel and Arminger (1992) with which potential differences in level-1 residual variation can be taken into account through the specification of non-linear parameter constraints. The problems of effect comparisons in multilevel probit SEM's and the proposed correction method are exemplified with a simulation study.

Effect Comparison in Multilevel Structural
Equation Models with Non-Metric Outcomes

Effect Comparison in Multilevel Structural Equation Models with Non-Metric Outcomes | Urheber*in: Kern, Christoph; Stein, Petra

Rechte vorbehalten - Freier Zugang

0
/
0

Umfang
Seite(n): 3892-3901
Sprache
Englisch
Anmerkungen
Status: Veröffentlichungsversion; nicht begutachtet

Erschienen in
JSM 2016 Proceedings, Social Statistics Section

Thema
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
statistische Analyse
statistische Methode
Simulation
Mehrebenenanalyse
multivariate Analyse
Modellvergleich
empirische Sozialforschung

Ereignis
Geistige Schöpfung
(wer)
Kern, Christoph
Stein, Petra
Ereignis
Veröffentlichung
(wer)
American Statistical Association
(wo)
Vereinigte Staaten von Amerika, Alexandria, VA
(wann)
2016

URN
urn:nbn:de:0168-ssoar-50108-5
Rechteinformation
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Letzte Aktualisierung
21.06.2024, 16:26 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Sammelwerksbeitrag

Beteiligte

  • Kern, Christoph
  • Stein, Petra
  • American Statistical Association

Entstanden

  • 2016

Ähnliche Objekte (12)