Arbeitspapier

Predictive density estimators for daily volatility based on the use of realized measures

The main objective of this paper is to propose a feasible, model free estimator of the predictive density of integrated volatility. In this sense, we extend recent papers by Andersen, Bollerslev, Diebold and Labys (2003), and by Andersen, Bollerslev and Meddahi (2004, 2005), who address the issue of pointwise prediction of volatility via ARMA models, based on the use of realized volatility. Our approach is to use a realized volatility measure to construct a non parametric (kernel) estimator of the predictive density of daily volatility. We show that, by choosing an appropriate realized measure, one can achieve consistent estimation, even in the presence of jumps and microstructure noise in prices. More precisely, we establish that four well known realized measures, i.e. realized volatility, bipower variation, and two measures robust to microstructure noise, satisfy the conditions required for the uniform consistency of our estimator. Furthermore, we outline an alternative simulation based approach to predictive density construction. Finally, we carry out a simulation experiment in order to assess the accuracy of our estimators, and provide an empirical illustration that underscores the importance of using microstructure robust measures when using high frequency data.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2006-20

Klassifikation
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
Semiparametric and Nonparametric Methods: General
Thema
Diffusions
integrated volatility
kernels
microstructure noise
realized volatility measures

Ereignis
Geistige Schöpfung
(wer)
Corradi, Valentina
Distaso, Walter
Swanson, Norman R.
Ereignis
Veröffentlichung
(wer)
Rutgers University, Department of Economics
(wo)
New Brunswick, NJ
(wann)
2006

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Corradi, Valentina
  • Distaso, Walter
  • Swanson, Norman R.
  • Rutgers University, Department of Economics

Entstanden

  • 2006

Ähnliche Objekte (12)