Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry **

Abstract: Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum‐chemical calculations applies density functional theory (DFT) evaluated in atomic‐orbital basis sets. This work provides best‐practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step‐by‐step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi‐level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry ** ; day:14 ; month:09 ; year:2022 ; extent:1
Angewandte Chemie ; (14.09.2022) (gesamt 1)

Creator

DOI
10.1002/ange.202205735
URN
urn:nbn:de:101:1-2022091515020906925374
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)