Arbeitspapier

On robust local polynominal estimation with long-memory errors

Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if least squares regression is used. In this paper, local polynomial smoothing based on M-estimation is considered for the case where the error process exhibits long-range dependence. In constrast to the iid case, all M-estimators are asymptotically equivalent to the least square solution, under the (ideal) Gaussian model. Outliers turn out to have a major effect on nonrobust bandwidth selection, in particular due to the change of the dependence structure.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2000,35

Subject
Zeitreihenanalyse
Nichtparametrisches Verfahren
Robustes Verfahren
Theorie
Statistischer Fehler

Event
Geistige Schöpfung
(who)
Beran, Jan
Feng, Yuanhua
Ghosh, Sucharita
Sibbertsen, Philipp
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2000

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Beran, Jan
  • Feng, Yuanhua
  • Ghosh, Sucharita
  • Sibbertsen, Philipp
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2000

Other Objects (12)