Arbeitspapier
Multivariate wishart stochastic volatility and changes in regime
This paper generalizes the basic Wishart multivariate stochastic volatility model of Philipov and Glickman (2006) and Asai and McAleer (2009) to encompass regime switching behavior. The latent state variable is driven by a first-order Markov process. The model allows for state-dependent (co)variance and correlation levels and state-dependent volatility spillover effects. Parameter estimates are obtained using Bayesian Markov Chain Monte Carlo procedures and filtered estimates of the latent variances and covariances are generated by particle filter techniques. The model is applied to five European stock index return series. The results show that the proposed regime-switching specification substantially improves the in-sample fit and the VaR forecasting performance relative to the basic model.
- Sprache
-
Englisch
- Erschienen in
-
Series: Economics Working Paper ; No. 2012-14
- Klassifikation
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Financial Forecasting and Simulation
- Thema
-
Multivariate stochastic volatility
Dynamic correlations
Wishart distribution
Markov switching
Markov chain Monte Carlo
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Gribisch, Bastian
- Ereignis
-
Veröffentlichung
- (wer)
-
Kiel University, Department of Economics
- (wo)
-
Kiel
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Gribisch, Bastian
- Kiel University, Department of Economics
Entstanden
- 2012