Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Detecting and tracking depression through temporal topic modeling of tweets: insights from a 180-day study ; volume:3 ; number:1 ; day:6 ; month:12 ; year:2024 ; pages:1-10 ; date:12.2024
npj mental health research ; 3, Heft 1 (6.12.2024), 1-10, 12.2024
- Creator
-
Chandrasekaran, Ranganathan
Kotaki, Suhas
Nagaraja, Abhilash Hosaagrahaara
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1038/s44184-024-00107-5
- URN
-
urn:nbn:de:101:1-2502202129507.039278593871
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:25 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Chandrasekaran, Ranganathan
- Kotaki, Suhas
- Nagaraja, Abhilash Hosaagrahaara
- SpringerLink (Online service)