Cell Free Expression in Proteinosomes Prepared from Native Protein‐PNIPAAm Conjugates
Abstract: Towards the goal of building synthetic cells from the bottom‐up, the establishment of micrometer‐sized compartments that contain and support cell free transcription and translation that couple cellular structure to function is of critical importance. Proteinosomes, formed from crosslinked cationized protein‐polymer conjugates offer a promising solution to membrane‐bound compartmentalization with an open, semi‐permeable membrane. Critically, to date, there has been no demonstration of cell free transcription and translation within water‐in‐water proteinosomes. Herein, a novel approach to generate proteinosomes that can support cell free transcription and translation is presented. This approach generates proteinosomes directly from native protein‐polymer (BSA‐PNIPAAm) conjugates. These native proteinosomes offer an excellent alternative as a synthetic cell chassis to other membrane bound compartments. Significantly, the native proteinosomes are stable under high salt conditions that enables the ability to support cell free transcription and translation and offer enhanced protein expression compared to proteinosomes prepared from traditional methodologies. Furthermore, the integration of native proteinosomes into higher order synthetic cellular architectures with membrane free compartments such as liposomes is demonstrated. The integration of bioinspired architectural elements with the central dogma is an essential building block for realizing minimal synthetic cells and is key for exploiting artificial cells in real‐world applications.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Cell Free Expression in Proteinosomes Prepared from Native Protein‐PNIPAAm Conjugates ; day:23 ; month:11 ; year:2023 ; extent:8
Macromolecular bioscience ; (23.11.2023) (gesamt 8)
- Creator
-
Gao, Mengfei
Wang, Dishi
Wilsch‐Bräuninger, Michaela
Leng, Weihua
Schulte, Jonathan
Morgner, Nina
Appelhans, Dietmar
Tang, T‐Y. Dora
- DOI
-
10.1002/mabi.202300464
- URN
-
urn:nbn:de:101:1-2023112314531227434960
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:21 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Gao, Mengfei
- Wang, Dishi
- Wilsch‐Bräuninger, Michaela
- Leng, Weihua
- Schulte, Jonathan
- Morgner, Nina
- Appelhans, Dietmar
- Tang, T‐Y. Dora