Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems
Abstract: In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.
- Location
- 
                Deutsche Nationalbibliothek Frankfurt am Main
 
- Extent
- 
                Online-Ressource
 
- Language
- 
                Englisch
 
- Bibliographic citation
- 
                Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems ; volume:22 ; number:1 ; year:2022 ; pages:248-272 ; extent:25
 Advanced nonlinear studies ; 22, Heft 1 (2022), 248-272 (gesamt 25)
 
- Creator
- 
                Ding, Yanheng
 Yu, Yuanyang
 Dong, Xiaojing
 
- DOI
- 
                
                    
                        10.1515/ans-2022-0011
- URN
- 
                
                    
                        urn:nbn:de:101:1-2022071414131325471403
- Rights
- 
                
                    
                        Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 
                
                    
                        15.08.2025, 7:33 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Ding, Yanheng
- Yu, Yuanyang
- Dong, Xiaojing
 
        
     
        
    