Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems

Abstract: In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained is described by the ratio of maximum and behavior at infinity of the potentials. We use the variational method that relies upon a delicate cutting off technique. It allows us to overcome the lack of convexity of the nonlinearities.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Multiplicity and concentration of semi-classical solutions to nonlinear Dirac-Klein-Gordon systems ; volume:22 ; number:1 ; year:2022 ; pages:248-272 ; extent:25
Advanced nonlinear studies ; 22, Heft 1 (2022), 248-272 (gesamt 25)

Creator
Ding, Yanheng
Yu, Yuanyang
Dong, Xiaojing

DOI
10.1515/ans-2022-0011
URN
urn:nbn:de:101:1-2022071414131325471403
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Ding, Yanheng
  • Yu, Yuanyang
  • Dong, Xiaojing

Other Objects (12)