Evaluation of filtering methods for use on high-frequency measurements of landslide displacements

Abstract Displacement monitoring is a critical control for risks associated with potentially sudden slope failures. Instrument measurements are, however, obscured by the presence of scatter. Data filtering methods aim to reduce the scatter and therefore enhance the performance of early warning systems (EWSs). The effectiveness of EWSs depends on the lag time between the onset of acceleration and its detection by the monitoring system such that a timely warning is issued for the implementation of consequence mitigation strategies. This paper evaluates the performance of three filtering methods (simple moving average, Gaussian-weighted moving average, and Savitzky–Golay) and considers their comparative advantages and disadvantages. The evaluation utilized six levels of randomly generated scatter on synthetic data, as well as high-frequency global navigation satellite system (GNSS) displacement measurements at the Ten-mile landslide in British Columbia, Canada. The simple moving average method exhibited significant disadvantages compared to the Gaussian-weighted moving average and Savitzky–Golay approaches. This paper presents a framework to evaluate the adequacy of different algorithms for minimizing monitoring data scatter.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Evaluation of filtering methods for use on high-frequency measurements of landslide displacements ; volume:22 ; number:2 ; year:2022 ; pages:411-430 ; extent:20
Natural hazards and earth system sciences ; 22, Heft 2 (2022), 411-430 (gesamt 20)

Urheber
Sharifi, Sohrab
Hendry, Michael T.
Macciotta, Renato
Evans, Trevor

DOI
10.5194/nhess-22-411-2022
URN
urn:nbn:de:101:1-2022021704221196729771
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:27 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Sharifi, Sohrab
  • Hendry, Michael T.
  • Macciotta, Renato
  • Evans, Trevor

Ähnliche Objekte (12)