Research on prediction model of thermal and moisture comfort of underwear based on principal component analysis and Genetic Algorithm–Back Propagation neural network

Abstract: In order to improve the efficiency and accuracy of thermal and moisture comfort prediction of underwear, a new prediction model is designed by using principal component analysis method to reduce the dimension of related variables and eliminate the multi-collinearity relationship between variables, and then inputting the converted variables into genetic algorithm (GA) and BP neural network. In order to avoid the problems of slow convergence speed and easy falling into local minimum of Back Propagation (BP) neural network, this paper adopted GA to optimize the weights and thresholds of BP neural network, and utilized MATLAB software to program, and established the prediction models of BP neural network and GA–BP neural network. To verify the superiority of the model, the predicted result of GA–BP, PCA–BP and BP are compared with GA–BP neural network. The results show that PCA could improve the accuracy and adaptability of GA–BP neural network for thermal and moisture comfort prediction. PCA–GA–BP model is obviously superior to GA–BP, PCA–BP, BP, SVM and K-means prediction models, which could accurately predict thermal and moisture comfort of underwear. The model has better accuracy prediction and simpler structure.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Research on prediction model of thermal and moisture comfort of underwear based on principal component analysis and Genetic Algorithm–Back Propagation neural network ; volume:22 ; number:6 ; year:2021 ; pages:607-619 ; extent:13
International journal of nonlinear sciences and numerical simulation ; 22, Heft 6 (2021), 607-619 (gesamt 13)

Urheber
Cheng, Pengpeng
Chen, Daoling
Wang, Jianping

DOI
10.1515/ijnsns-2020-0068
URN
urn:nbn:de:101:1-2503120452007.739955887150
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:20 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Cheng, Pengpeng
  • Chen, Daoling
  • Wang, Jianping

Ähnliche Objekte (12)