Multilevel thresholding image segmentation algorithm based on Mumford–Shah model

Abstract: Image segmentation is one of the important tasks of computer vision and computer image processing, and the purpose of image segmentation is to achieve the extraction and recognition of the target image region. The classical Mumford–Shah (MSh) image segmentation model is used to achieve the segmentation of images. With the goal to get the best segmentation effect on images by minimizing the MSh energy generalization function, a level set strategy is developed, and a model with global information infinite curve evolution is utilized. However, considering the low efficiency of this model for processing level set curves and the general quality of image segmentation. A multi-layer threshold search scheme is proposed to achieve rapid convergence of the target image level set curve. The experimental results showed that the multi-level thresholding image segmentation algorithm based on the MSh model can significantly improve the segmentation effect of images and reduce the segmentation time. The suggested MSK method outperforms the MPO algorithm, SSA algorithm, and EMO algorithm in the picture segmentation convergence time test, respectively, in terms of runtime efficiency by 356, 289, and 71%. Additionally, it performs superbly in both threshold searches and picture quality tests. The research topic has significant reference value for the study of contemporary computer vision imaging technologies.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Multilevel thresholding image segmentation algorithm based on Mumford–Shah model ; volume:32 ; number:1 ; year:2023 ; extent:14
Journal of intelligent systems ; 32, Heft 1 (2023) (gesamt 14)

Urheber
Kang, Xiancai
Hua, Chuangli

DOI
10.1515/jisys-2022-0290
URN
urn:nbn:de:101:1-2023112914165394207643
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:24 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Kang, Xiancai
  • Hua, Chuangli

Ähnliche Objekte (12)