Arbeitspapier

Combinatorial Integer Labeling Theorems on Finite Sets with an Application to Discrete Systems of Nonlinear Equations

Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set {1,2,...n,-1,-2,....-n} with the property that antipodal vertices on the boundary of the cube are assigned opposite labels, the triangulation admits a 1-dimensional simplex whose two vertices have opposite labels. In this paper we are concerned with an arbitrary finite set D of integral vectors in the n-dimensional Euclidean space and an integer labeling that assigns to each element of D a label from the set {1,2,...n,-1,-2,....-n}. Using a constructive approach we prove two combinatorial theorems of Tucker type, stating that under some mild conditions there exists two integral vectors in D having opposite labels and being cell-connected in the sense that both belong to the same unit cube. These theorems will be used to show in a constructive way the existence of an integral solution to a system of nonlinear equations under certain natural conditions.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 07-084/1

Klassifikation
Wirtschaft
Optimization Techniques; Programming Models; Dynamic Analysis
Existence and Stability Conditions of Equilibrium
Computable General Equilibrium Models
Noncooperative Games
Financial Econometrics
Thema
Sperner lemma
Tucker lemma
integer labeling
simplicial algorithm
discrete nonlinear equations
Nichtlineare Optimierung
Nichtkooperatives Spiel
Theorie

Ereignis
Geistige Schöpfung
(wer)
van der Laan, Gerard
Talman, Dolf
Yang, Zaifu
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • van der Laan, Gerard
  • Talman, Dolf
  • Yang, Zaifu
  • Tinbergen Institute

Entstanden

  • 2007

Ähnliche Objekte (12)