Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma

Abstract: Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Nature communications. - 15, 1 (2024) , 524, ISSN: 2041-1723

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Chanda, Tirtha
Hauser, Katja
Hobelsberger, Sarah
Brinker, Titus Josef
Reimer-Taschenbrecker, Antonia
Maul, Julia-Tatjana
Lehr, Saskia

DOI
10.1038/s41467-023-43095-4
URN
urn:nbn:de:bsz:25-freidok-2466899
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
25.03.2025, 13:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)