Arbeitspapier

Genetic Algorithms and Economic Evolution

This paper tries to connect the theory of genetic algorithm (GA) learning to evolutionary game theory. It is shown that economic learning via genetic algorithms can be described as a specific form of evolutionary game. It will be pointed out that GA learning results in a series of near Nash equilibria which during the learning process build up to finally reach a neighborhood of an evolutionarily stable state. In order to clarify this point, a concept of evolutionary stability of genetic populations will be developed. Thus, in a second part of the paper it becomes possible to explain both, the reasons for the specific dynamics of standard GA learning models and the different kind of dynamics of GA learning models, which use extensions to the standard GA.

Sprache
Englisch

Erschienen in
Series: Diskussionsbeitrag ; No. 219

Klassifikation
Wirtschaft
Computational Techniques; Simulation Modeling
Stochastic and Dynamic Games; Evolutionary Games; Repeated Games
Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
Thema
learning
computational economics
genetic algorithms
evolutionary dynamics

Ereignis
Geistige Schöpfung
(wer)
Riechmann, Thomas
Ereignis
Veröffentlichung
(wer)
Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(wo)
Hannover
(wann)
1998

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Riechmann, Thomas
  • Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Entstanden

  • 1998

Ähnliche Objekte (12)