Arbeitspapier
Combining forecasts based on multiple encompassing tests in a macroeconomic core system
We investigate whether and to what extent multiple encompassing tests may help determine weights for forecast averaging in a standard vector autoregressive setting. To this end we consider a new test-based procedure, which assigns non-zero weights to candidate models that add information not covered by other models. The potential benefits of this procedure are explored in extensive Monte Carlo simulations using realistic designs that are adapted to U.K. and to French macroeconomic data. The real economic growth rates of these two countries serve as the target series to be predicted. Generally, we find that the test-based averaging of forecasts yields a performance that is comparable to a simple uniform weighting of individual models. In one of our role-model economies, test-based averaging achieves some advantages in small samples. In larger samples, pure prediction models outperform forecast averages.
- Sprache
-
Englisch
- Erschienen in
-
Series: Reihe Ökonomie / Economics Series ; No. 243
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Forecasting Models; Simulation Methods
- Thema
-
combining forecasts
encompassing tests
model selection
time series
Prognoseverfahren
Statistischer Test
Modellierung
Zeitreihenanalyse
Monte-Carlo-Methode
Schätzung
Frankreich
USA
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Costantini, Mauro
Kunst, Robert M.
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for Advanced Studies (IHS)
- (wo)
-
Vienna
- (wann)
-
2009
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Costantini, Mauro
- Kunst, Robert M.
- Institute for Advanced Studies (IHS)
Entstanden
- 2009