Estimates for eigenvalues of the Neumann and Steklov problems

Abstract: We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Estimates for eigenvalues of the Neumann and Steklov problems ; volume:12 ; number:1 ; year:2023 ; extent:12
Advances in nonlinear analysis ; 12, Heft 1 (2023) (gesamt 12)

Creator
Du, Feng
Mao, Jing
Wang, Qiaoling
Xia, Changyu
Zhao, Yan

DOI
10.1515/anona-2022-0321
URN
urn:nbn:de:101:1-2023072414033558124164
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:44 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Du, Feng
  • Mao, Jing
  • Wang, Qiaoling
  • Xia, Changyu
  • Zhao, Yan

Other Objects (12)