Estimates for eigenvalues of the Neumann and Steklov problems
Abstract: We prove Li-Yau-Kröger-type bounds for Neumann-type eigenvalues of the biharmonic operator on bounded domains in a Euclidean space. We also prove sharp estimates for lower order eigenvalues of a biharmonic Steklov problem and of the Laplacian, which directly implies two sharp Reilly-type inequalities for the corresponding first nonzero eigenvalue.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Estimates for eigenvalues of the Neumann and Steklov problems ; volume:12 ; number:1 ; year:2023 ; extent:12
Advances in nonlinear analysis ; 12, Heft 1 (2023) (gesamt 12)
- Urheber
-
Du, Feng
Mao, Jing
Wang, Qiaoling
Xia, Changyu
Zhao, Yan
- DOI
-
10.1515/anona-2022-0321
- URN
-
urn:nbn:de:101:1-2023072414033558124164
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:44 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Du, Feng
- Mao, Jing
- Wang, Qiaoling
- Xia, Changyu
- Zhao, Yan