PERFORMANCE EVALUATION OF FUSION TECHNIQUES FOR CROSS-DOMAIN BUILDING ROOFTOP SEGMENTATION

Abstract. Convolutional Neural Networks have been widely introduced to building rooftop segmentation using satellite and aerial imagery. Preparing efficient training data is still among the critical issues on this topic. Therefore, adopting available annotated cross-domain multisource dataset is needed. This paper evaluates the performance of fusing the state-of-art deep learning neural network architectures for cross-domain building rooftop segmentation. We have selected three semantic image segmentation neural networks, including Swin transformer, OCRNet and HRNet. The predictions from these three neural networks are combined with majority voting, max value and union fusion techniques, a refined building rooftop segmentation mask is therefore delivered. The experiments on two benchmark datasets show that the proposed fusion techniques outperform single models and other state-of-art cross-domain segmentation approaches.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
PERFORMANCE EVALUATION OF FUSION TECHNIQUES FOR CROSS-DOMAIN BUILDING ROOFTOP SEGMENTATION ; volume:XLIII-B3-2022 ; year:2022 ; pages:501-508 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLIII-B3-2022 (2022), 501-508 (gesamt 8)

Classification
Politik

Creator
Li, H.
Tian, J.
Xie, Y.
Li, C.
Reinartz, P.

DOI
10.5194/isprs-archives-XLIII-B3-2022-501-2022
URN
urn:nbn:de:101:1-2022060205382990218293
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Li, H.
  • Tian, J.
  • Xie, Y.
  • Li, C.
  • Reinartz, P.

Other Objects (12)