Multi‐Distance Spatial‐Temporal Graph Neural Network for Anomaly Detection in Blockchain Transactions
This article presents MDST‐GNN, a multi‐distance spatial‐temporal graph neural network for blockchain anomaly detection. To address challenges in detecting fraudulent cryptocurrency transactions, MDST‐GNN integrates a multi‐distance graph convolutional architecture with adaptive temporal modeling, enabling capture of both local and global spatial dependencies while inferring patterns from anonymized temporal data. The model incorporates self‐supervised learning to enhance generalization ability. Experiments on the Elliptic dataset demonstrate MDST‐GNN's superior performance over state‐of‐the‐art methods, achieving improvements of 1.5% in AUC‐ROC and 2.9% in AUC‐PR. The model's robustness to temporal granularity and effectiveness in identifying suspicious transactions underscore its practical value for blockchain forensics.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Multi‐Distance Spatial‐Temporal Graph Neural Network for Anomaly Detection in Blockchain Transactions ; day:30 ; month:01 ; year:2025 ; extent:14
Advanced intelligent systems ; (30.01.2025) (gesamt 14)
- Urheber
-
Chen, Shiyang
Liu, Yang
Zhang, Qun
Shao, Zhouhang
Wang, Zewei
- DOI
-
10.1002/aisy.202400898
- URN
-
urn:nbn:de:101:1-2501311309206.945781578438
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:33 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Chen, Shiyang
- Liu, Yang
- Zhang, Qun
- Shao, Zhouhang
- Wang, Zewei