Arbeitspapier
Machine learning sentiment analysis, Covid-19 news and stock market reactions
The possibility to investigate the impact of news on stock prices has observed a strong evolution thanks to the recent use of natural language processing (NLP) in finance and economics. In this paper, we investigate COVID-19 news, elaborated with the "Natural Language Toolkit" that uses machine learning models to extract the news' sentiment. We consider the period from January till June 2020 and analyze 203,886 online articles that deal with the pandemic and that were published on three platforms: MarketWatch.com, Reuters.com and NYtimes.com. Our findings show that there is a significant and positive relationship between sentiment score and market returns. This result indicates that an increase (decrease) in the sentiment score implies a rise in positive (negative) news and corresponds to positive (negative) market returns. We also find that the variance of the sentiments and the volume of the news sources for Reuters and MarketWatch, respectively, are negatively associated to market returns indicating that an increase of the uncertainty of the sentiment and an increase in the arrival of news have an adverse impact on the stock market.
- Language
-
Englisch
- Bibliographic citation
-
Series: SAFE Working Paper ; No. 288
- Classification
-
Wirtschaft
General Financial Markets: General (includes Measurement and Data)
Information and Market Efficiency; Event Studies; Insider Trading
International Financial Markets
- Subject
-
COVID-19 news
Sentiment Analysis
Stock Markets
- Event
-
Geistige Schöpfung
- (who)
-
Costola, Michele
Nofer, Michael
Hinz, Oliver
Pelizzon, Loriana
- Event
-
Veröffentlichung
- (who)
-
Leibniz Institute for Financial Research SAFE
- (where)
-
Frankfurt a. M.
- (when)
-
2020
- Handle
- Last update
-
10.03.2025, 11:43 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Costola, Michele
- Nofer, Michael
- Hinz, Oliver
- Pelizzon, Loriana
- Leibniz Institute for Financial Research SAFE
Time of origin
- 2020