Arbeitspapier

Clustering algorithms for aerial photographs and high resolution satellite images

This work, and specially, the use of clustering algorithms was motivated by the need to perform a field-study with erosion data from arid areas. Using data obtained from analyzing erosion, land degradation and desertification phenomena will show some limitations. If only terrestrial observations are considered. Specially, if we are interested in, for instance, forecasting problems of erosion spread. An improvement of the data is possible, if aerial photographs and recent high resolution satellite images are additionally taken into account. The uprising problem with such images is that they contain a huge amount of information, and standard processing algorithms are, in most cases, unable to answer the analyst needs. In order to solve these problems, a compression and suitable selection of the underlying information is needed. Although the development of computer has reached a stage that enables the handling with huge data-sets, considerations concering time complexity are still relevant. In this paper, we present the developed algorithms and discuss possible improvements to attein our aim in performing a classification within a suitable computational time. In section 2, we describe algorithms, such as ISODATA and PHASE, that are based on the classical k-means algorithm. Section 3 describes two ways of finding a set of good starting seeds (centroids) for classification with an adapted method from the known single linkage and the Kohonen networks, as well. Section 4 presents the application of the methods from section 3 to aerial photographs and high resolution satellite images.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2000,28

Ereignis
Geistige Schöpfung
(wer)
Zerbst, Matthias
Tschiersch, Lars
Talbi, Mohamed
Guimarães, Gabriela
Urfer, Wolfgang
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2000

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Zerbst, Matthias
  • Tschiersch, Lars
  • Talbi, Mohamed
  • Guimarães, Gabriela
  • Urfer, Wolfgang
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2000

Ähnliche Objekte (12)