Automatic adjustment of laparoscopic pose using deep reinforcement learning

Abstract Q Q -value estimation consists of convolutional neural networks for feature extraction and fully connected layers for policy learning. The proposed method is validated in simulation. In different test scenarios, the laparoscopic arm can be well automatically adjusted so that surgical instruments with different postures are in the proper position of the field of view. Simulation results demonstrate the effectiveness of the method in learning the highly non-linear mapping between laparoscopic images and the optimal action policy of a laparoscopic arm.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Automatic adjustment of laparoscopic pose using deep reinforcement learning ; volume:13 ; number:1 ; year:2022 ; pages:593-602 ; extent:10
Mechanical sciences ; 13, Heft 1 (2022), 593-602 (gesamt 10)

Creator
Yu, Lingtao
Xia, Yongqiang
Wang, Pengcheng
Sun, Lining

DOI
10.5194/ms-13-593-2022
URN
urn:nbn:de:101:1-2022063005173089919646
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:32 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Yu, Lingtao
  • Xia, Yongqiang
  • Wang, Pengcheng
  • Sun, Lining

Other Objects (12)