Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets

Abstract 0.76 1.78 of the dummy model). Furthermore, we demonstrate that it is possible to detect concept drift, i.e. situations where the model is applied outside its training domain and a new LES run may be necessary to obtain reliable results. Regression models can be used to replace LES simulations in estimating air pollutant concentrations, unless higher accuracy is needed. In order to have reliable results, it is however important to do the model and feature selection carefully to avoid overfitting and to use methods to detect the concept drift.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Machine-learning models to replicate large-eddy simulations of air pollutant concentrations along boulevard-type streets ; volume:14 ; number:12 ; year:2021 ; pages:7411-7424 ; extent:14
Geoscientific model development ; 14, Heft 12 (2021), 7411-7424 (gesamt 14)

Classification
Politik

Creator
Lange, Moritz
Suominen, Henri
Kurppa, Mona
Järvi, Leena
Oikarinen, Emilia
Savvides, Rafael
Puolamäki, Kai

DOI
10.5194/gmd-14-7411-2021
URN
urn:nbn:de:101:1-2021120904342546602470
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:20 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lange, Moritz
  • Suominen, Henri
  • Kurppa, Mona
  • Järvi, Leena
  • Oikarinen, Emilia
  • Savvides, Rafael
  • Puolamäki, Kai

Other Objects (12)