Sparse polynomial chaos expansion for nonlinear finite element simulations with random material properties

Abstract: This contribution deals with the uncertainty quantification for applied nonlinear structural engineering problems, including high stochastic dimensions. A finite element problem with different material models is investigated. The efficiency, accuracy and convergence of sparse PCE are studied numerically and compared with Monte‐Carlo Simulation (MCS) for non‐linear structural analysis including elasto‐plastic and damage models. In both models, the Young's modulus is considered as random fields discretised by Karhunen Loeve Expansion (KLE). In the provided studies, sparse PCE converges fast and is highly efficient for linear elastic and elasto‐plastic material models. However, sparse PCE loses its effectiveness and exhibits lower accuracy for the damage material model.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Sparse polynomial chaos expansion for nonlinear finite element simulations with random material properties ; volume:23 ; number:1 ; year:2023 ; extent:7
Proceedings in applied mathematics and mechanics ; 23, Heft 1 (2023) (gesamt 7)

Creator
Voelsen, Esther
Dannert, Mona M.
Basmaji, Ammar A.
Bensel, Fynn
Nackenhorst, Udo

DOI
10.1002/pamm.202200131
URN
urn:nbn:de:101:1-2023060115180656117973
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:56 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Voelsen, Esther
  • Dannert, Mona M.
  • Basmaji, Ammar A.
  • Bensel, Fynn
  • Nackenhorst, Udo

Other Objects (12)