Stochastic segmentation on images with uncertain data

Abstract: The present work considers a stochastic segmentation method on images in the presence of noise within a PDE‐based image processing framework. Classical methods are not able to capture the error propagation of uncertain estimated input data and their impact on the final segmentation result, which can be of great importance for clinical decisions. Therefore, an intrusive generalized polynomial chaos (gPC) expansion for a stochastic level‐set based geodesic active contours method is proposed. Employing an operator splitting and a stochastic Galerkin projection a deterministic and symmetric non‐linear hyperbolic system can be obtained, which can be treated using common numerical methods.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Stochastic segmentation on images with uncertain data ; volume:21 ; number:1 ; year:2021 ; extent:2
Proceedings in applied mathematics and mechanics ; 21, Heft 1 (2021) (gesamt 2)

Creator
Theilen, Elin
Preusser, Tobias

DOI
10.1002/pamm.202100233
URN
urn:nbn:de:101:1-2021121514095122427237
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:40 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Theilen, Elin
  • Preusser, Tobias

Other Objects (12)