Image‐Based Flow Regime Recognition in Aerated Stirred Tanks Using Deep Transfer Learning

Abstract: Monitoring of flow regimes in aerated stirred tanks is important to ensure energy efficiency and product quality. The use of deep learning models for the recognition of flow regimes shows promising results. However, such models require a large amount of data for training. The aim of this paper is to apply the deep transfer learning approach to address this challenge. We compare various pre‐trained models with the differential learning rate and 2‐step transfer learning approaches to analyse the resultant model performance. We also investigate the effect of the dataset size on the classification accuracy.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Image‐Based Flow Regime Recognition in Aerated Stirred Tanks Using Deep Transfer Learning ; day:10 ; month:05 ; year:2023 ; extent:9
Chemie - Ingenieur - Technik ; (10.05.2023) (gesamt 9)

Urheber
Khaydarov, Valentin
Becker, Marc Philipp
Urbas, Leon

DOI
10.1002/cite.202200246
URN
urn:nbn:de:101:1-2023051115192464426058
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:55 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Khaydarov, Valentin
  • Becker, Marc Philipp
  • Urbas, Leon

Ähnliche Objekte (12)