Arbeitspapier

Measurement error and rank correlations

This paper characterizes and proposes a method to correct for errors-in-variables biases in the estimation of rank correlation coeffcients (Spearman's ρ and Kendall's τ). We first investigate a set of suffcient conditions under which measurement errors bias the sample rank correlations toward zero. We then provide a feasible nonparametric bias-corrected estimator based on the technique of small error variance approximation. We assess its performance in simulations and an empirical application, using rich Swedish data to estimate intergenerational rank correlations in income. The method performs well in both cases, lowering the mean squared error by 50-85 percent already in moderately sized samples (n = 1,000).

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP28/18

Klassifikation
Wirtschaft
Thema
Errors-in-variables
Spearman's rank correlation
Kendall's tau
Small variance approximation
Intergenerational mobility

Ereignis
Geistige Schöpfung
(wer)
Kitagawa, Toru
Nybom, Martin
Stuhler, Jan
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2018

DOI
doi:10.1920/wp.cem.2081.2818
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kitagawa, Toru
  • Nybom, Martin
  • Stuhler, Jan
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2018

Ähnliche Objekte (12)