DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION

Abstract. Dense matching plays an important role in 3D modeling from satellite images. Its purpose is to establish pixel-by-pixel correspondences between two stereo images. The most well-known algorithm is the semi-global matching (SGM), which can generate high-quality 3D models with high computational efficiency. Due to the complex coverage and imaging condition, SGM cannot cope with these situation well. In recent years, deep learning-based stereo matching has attracted wide attention and shown overwhelming benefits over traditional algorithms in terms of precision and completeness. However, existing models are usually evaluated by using close-ranging datasets. Thus, this study investigates the recent deep learning models and evaluate their performance on both close-ranging and satellite image datasets. The results demonstrate that deep learning network can better adapt to the satellite dataset than the typical SGM. Meanwhile, the generalization ability of deep learning-based models is still low for the real application at recent time.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
DEEP LEARNING-BASED STEREO MATCHING FOR HIGH-RESOLUTION SATELLITE IMAGES: A COMPARATIVE EVALUATION ; volume:XLVIII-1/W2-2023 ; year:2023 ; pages:1635-1642 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-1/W2-2023 (2023), 1635-1642 (gesamt 8)

Urheber
He, X.
Jiang, S.
He, S.
Li, Q.
Jiang, W.
Wang, L.

DOI
10.5194/isprs-archives-XLVIII-1-W2-2023-1635-2023
URN
urn:nbn:de:101:1-2023122103361339815338
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:25 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • He, X.
  • Jiang, S.
  • He, S.
  • Li, Q.
  • Jiang, W.
  • Wang, L.

Ähnliche Objekte (12)