Arbeitspapier

Forecasting gross value-added at the regional level: Are sectoral disaggregated predictions superior to direct ones?

In this paper, we ask whether it is possible to forecast gross value-added (GVA) and its sectoral subcomponents at the regional level. With an autoregressive distributed lagmodel we forecast total and sectoral GVA for one German state (Saxony) with more than 300 indicators from different regional levels (international, national and regional) and additionally make usage of different forecast pooling strategies and factor models.Our results show that we are able to increase forecast accuracy of GVA for every sector and for all forecast horizons (one up to four quarters) compared to an autoregressive process. Finally, we show that sectoral forecasts contain more information in the short term (one quarter), whereas direct forecasts of total GVA are referable in the medium (two and three quarters) and long term (four quarters).

Sprache
Englisch

Erschienen in
Series: ifo Working Paper ; No. 171

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Evaluation, Validation, and Selection
Forecasting Models; Simulation Methods
Prices, Business Fluctuations, and Cycles: Forecasting and Simulation: Models and Applications
Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
Thema
Regional forecasting
gross value-added
forecast combination
disaggregated forecasts
factor models.

Ereignis
Geistige Schöpfung
(wer)
Lehmann, Robert
Wohlrabe, Klaus
Ereignis
Veröffentlichung
(wer)
ifo Institute - Leibniz Institute for Economic Research at the University of Munich
(wo)
Munich
(wann)
2013

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Lehmann, Robert
  • Wohlrabe, Klaus
  • ifo Institute - Leibniz Institute for Economic Research at the University of Munich

Entstanden

  • 2013

Ähnliche Objekte (12)