Spectrometric characterization of monolithic perovskite/silicon tandem solar cells

Abstract: In monolithic perovskite/silicon tandem solar cells, it is important to know which subcells are limiting the overall current to adapt the perovskite absorber thickness and bandgap accordingly. The current matching situation is usually analyzed by integrating measured external quantum efficiencies. However, this method can lead to significant errors and misinterpretations if metastable perovskite solar cells are involved. Herein, spectrometric characterization is presented as an alternative approach avoiding these errors. Current–voltage curves are recorded under different spectral conditions. Spectral irradiance settings are varied in a systematic way from redshifted spectra (the perovskite top solar cell limits the current) to blueshifted spectra (the silicon bottom solar cell limits the current) around the air mass 1.5 global (AM1.5G) spectrum. This method not only allows for accurate determination of the current matching point, but also gives quantitative insight in the behavior of the single subcells and their influence on the tandem performance. As different current mismatching also influences other global cell parameters, an example is presented where the current loss due to the current mismatch is partly compensated by a strong fill factor increase when the silicon solar cell limits the current, resulting in a high-power output also at the AM1.5G condition

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch
Notes
ISSN: 2367-198X

Classification
Elektrotechnik, Elektronik

Event
Veröffentlichung
(where)
Freiburg
(who)
Universität
(when)
2023
Creator

DOI
10.1002/solr.202200948
URN
urn:nbn:de:bsz:25-freidok-2367891
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:47 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Time of origin

  • 2023

Other Objects (12)