Arbeitspapier

Probabilistic forecasting of thunderstorms in the Eastern Alps

A probabilistic forecasting method to predict thunderstorms in the European Eastern Alps is developed. A statistical model links lightning occurrence from the ground-based ALDIS detection network to a large set of direct and derived variables from a numerical weather prediction (NWP) system. The NWP system is the high resolution run (HRES) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The statistical model is a generalized additive model (GAM) framework, which is estimated by Markov chain Monte Carlo (MCMC) simulation. Gradient boosting with stability selection serves as a tool for selecting a stable set of potentially nonlinear terms. Three grids from 64X64 km2 to 16X16 km2 and 5 forecasts horizons from 5 to 1 day ahead are investigated to predict thunderstorms during afternoons (1200 UTC to 1800 UTC). Frequently selected covariates for the nonlinear terms are variants of convective precipitation, convective potential available energy, relative humidity and temperature in the mid layers of the troposphere, among others. All models, even for a lead time of five days, outperform a forecast based on climatology in an out-of-sample comparison. An example case illustrates that coarse spatial patterns are already successfully forecast five days ahead.

Sprache
Englisch

Erschienen in
Series: Working Papers in Economics and Statistics ; No. 2017-25

Klassifikation
Wirtschaft
Bayesian Analysis: General
Forecasting Models; Simulation Methods
Climate; Natural Disasters and Their Management; Global Warming
Thema
lightning detection data
statistical post-processing
generalized additive models
gradient boosting
stability selection
MCMC

Ereignis
Geistige Schöpfung
(wer)
Simon, Thorsten
Fabsic, Peter
Mayr, Georg J.
Umlauf, Nikolaus
Zeileis, Achim
Ereignis
Veröffentlichung
(wer)
University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)
(wo)
Innsbruck
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Simon, Thorsten
  • Fabsic, Peter
  • Mayr, Georg J.
  • Umlauf, Nikolaus
  • Zeileis, Achim
  • University of Innsbruck, Research Platform Empirical and Experimental Economics (eeecon)

Entstanden

  • 2017

Ähnliche Objekte (12)