Arbeitspapier
Bounding sets for treatment effects with proportional selection
In linear econometric models with proportional selection on unobservables, omitted variable bias in estimated treatment effects are roots of a cubic equation involving estimated parameters from a short and intermediate regression, the former excluding and the latter including all observable controls. The roots of the cubic are functions of ffi, the degree of proportional selection on unobservables, and Rmax, the R-squared in a hypothetical long regression that includes the unobservable confounder and all observable controls. In this paper a simple method is proposed to compute roots of the cubic over meaningful regions of the ffi-Rmax plane and use the roots to construct bounding sets for the true treatment effect. The proposed method is illustrated with both a simulated and an observational data set.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 2021-10
- Klassifikation
-
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
- Thema
-
treatment effect
omitted variable bias
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Basu, Deepankar
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Massachusetts, Department of Economics
- (wo)
-
Amherst, MA
- (wann)
-
2021
- DOI
-
doi:10.7275/22680948
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Basu, Deepankar
- University of Massachusetts, Department of Economics
Entstanden
- 2021