High Throughput Multidimensional Kinetic Screening in Continuous Flow Reactors

Abstract: An automated high throughput multidimensional reaction screening platform based on an inline Fourier‐transform infrared spectroscopy is presented. By combining flow chemistry, machine automation and inline analysis, the platform is able to screen reactions in multidimensions (residence time, monomer concentration, degree of polymerization, reaction temperature and monomer conversion) rapidly and efficiently way. Kinetic data libraries associated with high data precision (absolute error <4 %), high reproducibility and high data density are built with ease from the platform. To test the method, we screened the reversible addition‐fragmentation chain transfer polymerization of methyl acrylate in unmatched detail, and the ring opening metathesis polymerization of methyl‐5‐norbornene‐2‐carboxylate. The method we introduce is a key step in providing “big data” for data driven research in the future, and already at present allows for precise prediction of reaction outcomes within the high‐dimensional chemical parameter space that is screened.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
High Throughput Multidimensional Kinetic Screening in Continuous Flow Reactors ; day:16 ; month:08 ; year:2023 ; extent:8
Angewandte Chemie ; (16.08.2023) (gesamt 8)

Creator
Zhang, Bo
Mathoor, Ansila
Junkers, Tanja

DOI
10.1002/ange.202308838
URN
urn:nbn:de:101:1-2023081715040949384920
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:59 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)