NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR

Abstract Although the concepts of nonuniform sampling (NUS​​​​​​​) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago, it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., “resolution”) or peaks of weak intensity (i.e., “sensitivity”). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the “Nonuniform Sampling Contest” (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
NUScon: a community-driven platform for quantitative evaluation of nonuniform sampling in NMR ; volume:2 ; number:2 ; year:2021 ; pages:843-861 ; extent:19
Magnetic resonance ; 2, Heft 2 (2021), 843-861 (gesamt 19)

Creator
Pustovalova, Yulia
Delaglio, Frank
Craft, D. Levi
Arthanari, Haribabu
Bax, Ad
Billeter, Martin
Bostock, Mark J.
Dashti, Hesam
Hansen, D. Flemming
Hyberts, Sven G.
Johnson, Bruce A.
Kazimierczuk, Krzysztof
Lu, Hengfa
Maciejewski, Mark
Miljenović, Tomas M.
Mobli, Mehdi
Nietlispach, Daniel
Orekhov, Vladislav
Powers, Robert
Qu, Xiaobo
Robson, Scott Anthony
Rovnyak, David
Wagner, Gerhard
Ying, Jinfa
Zambrello, Matthew
Hoch, Jeffrey C.
Donoho, David L.
Schuyler, Adam D.

DOI
10.5194/mr-2-843-2021
URN
urn:nbn:de:101:1-2021120204470736075934
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Pustovalova, Yulia
  • Delaglio, Frank
  • Craft, D. Levi
  • Arthanari, Haribabu
  • Bax, Ad
  • Billeter, Martin
  • Bostock, Mark J.
  • Dashti, Hesam
  • Hansen, D. Flemming
  • Hyberts, Sven G.
  • Johnson, Bruce A.
  • Kazimierczuk, Krzysztof
  • Lu, Hengfa
  • Maciejewski, Mark
  • Miljenović, Tomas M.
  • Mobli, Mehdi
  • Nietlispach, Daniel
  • Orekhov, Vladislav
  • Powers, Robert
  • Qu, Xiaobo
  • Robson, Scott Anthony
  • Rovnyak, David
  • Wagner, Gerhard
  • Ying, Jinfa
  • Zambrello, Matthew
  • Hoch, Jeffrey C.
  • Donoho, David L.
  • Schuyler, Adam D.

Other Objects (12)