Arbeitspapier

Bootstrap Confidence Sets for Spectral Projectors of Sample Covariance

Let X1, . . . ,Xn be i.i.d. sample in Rp with zero mean and the covariance matrix . The problem of recovering the projector onto an eigenspace of from these observations naturally arises in many applications. Recent technique from [9] helps to study the asymp- totic distribution of the distance in the Frobenius norm kPr - bP rk2 between the true projector Pr on the subspace of the rth eigenvalue and its empirical counterpart bP r in terms of the effective rank of . This paper offers a bootstrap procedure for building sharp confidence sets for the true projector Pr from the given data. This procedure does not rely on the asymptotic distribution of kPr - bP rk2 and its moments. It could be applied for small or moderate sample size n and large dimension p. The main result states the validity of the proposed procedure for finite samples with an explicit error bound for the er- ror of bootstrap approximation. This bound involves some new sharp results on Gaussian comparison and Gaussian anti-concentration in high-dimensional spaces. Numeric results confirm a good performance of the method in realistic examples.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2018-024

Klassifikation
Wirtschaft
Mathematical and Quantitative Methods: General

Ereignis
Geistige Schöpfung
(wer)
Naumov, A.
Spokoiny, V.
Ulyanovk, V.
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2018

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Naumov, A.
  • Spokoiny, V.
  • Ulyanovk, V.
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2018

Ähnliche Objekte (12)