Arbeitspapier
Bootstrap Confidence Sets for Spectral Projectors of Sample Covariance
Let X1, . . . ,Xn be i.i.d. sample in Rp with zero mean and the covariance matrix . The problem of recovering the projector onto an eigenspace of from these observations naturally arises in many applications. Recent technique from [9] helps to study the asymp- totic distribution of the distance in the Frobenius norm kPr - bP rk2 between the true projector Pr on the subspace of the rth eigenvalue and its empirical counterpart bP r in terms of the effective rank of . This paper offers a bootstrap procedure for building sharp confidence sets for the true projector Pr from the given data. This procedure does not rely on the asymptotic distribution of kPr - bP rk2 and its moments. It could be applied for small or moderate sample size n and large dimension p. The main result states the validity of the proposed procedure for finite samples with an explicit error bound for the er- ror of bootstrap approximation. This bound involves some new sharp results on Gaussian comparison and Gaussian anti-concentration in high-dimensional spaces. Numeric results confirm a good performance of the method in realistic examples.
- Sprache
-
Englisch
- Erschienen in
-
Series: IRTG 1792 Discussion Paper ; No. 2018-024
- Klassifikation
-
Wirtschaft
Mathematical and Quantitative Methods: General
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Naumov, A.
Spokoiny, V.
Ulyanovk, V.
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
- (wo)
-
Berlin
- (wann)
-
2018
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Naumov, A.
- Spokoiny, V.
- Ulyanovk, V.
- Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
Entstanden
- 2018