Secure Incident & Evidence Management Framework (SIEMF) for Internet of Vehicles using Deep Learning and Blockchain

Abstract: Even though there is continuous improvement in road and vehicle safety, road traffic incidents have been increasing over last few decades. There is a need to reduce traffic incidents like accidents through predictive analysis and timely warnings while at the same time data related to accidents and traffic violations need to be maintained in a tamper proof storage system that can be retrieved for forensic analysis and law enforcement at a later stage. The Secure Incident and Evidence Management Framework (SIEMF) proposed in this work address these two challenges of predictive modeling for timely warning and secure evidence management for forensics analysis in case of accidents and traffic violations. The system proposes a deep learning based predictive incident modeling with blockchain and CP-ABE based access control for the incident data stored in blockchain.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Secure Incident & Evidence Management Framework (SIEMF) for Internet of Vehicles using Deep Learning and Blockchain ; volume:10 ; number:1 ; year:2020 ; pages:408-421 ; extent:14
Open computer science ; 10, Heft 1 (2020), 408-421 (gesamt 14)

Creator
Philip, A. Oommen
Saravanaguru, RA K.

DOI
10.1515/comp-2019-0022
URN
urn:nbn:de:101:1-2410291753538.202771017243
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Philip, A. Oommen
  • Saravanaguru, RA K.

Other Objects (12)