Arbeitspapier

Bayesian (non-)unique sparse factor modelling

Factor modelling extracts common information from a high-dimensional data set into few common components, where the latent factors usually explain a large share of data variation. Exploratory factor estimation induces sparsity into the loading matrix to associate units or series with those factors most strongly associated with them, eventually determining factor interpretation. We motivate geometrically under which circumstances it may be necessary to consider the existence of multiple sparse factor loading matrices with similar degrees of sparsity for a given data set. We propose two MCMC approaches for Bayesian inference and corresponding post-processing algorithms to uncover multiple sparse representations of the factor loadings matrix. We investigate both approaches in a simulation study. Applied to data on country-specific gross domestic product and U.S. price components series, we retrieve multiple sparse factor representations for each data set. Both approaches prove useful to discriminate between pervasive and weaker factors.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 23.04

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Large Data Sets: Modeling and Analysis
Thema
Multimodality
Sparsity
Pervasive and weak factors

Ereignis
Geistige Schöpfung
(wer)
Kaufmann, Sylvia
Pape, Markus
Ereignis
Veröffentlichung
(wer)
Swiss National Bank, Study Center Gerzensee
(wo)
Gerzensee
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kaufmann, Sylvia
  • Pape, Markus
  • Swiss National Bank, Study Center Gerzensee

Entstanden

  • 2023

Ähnliche Objekte (12)