Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity
Abstract x conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based on the Master Chemical Mechanism (MCM) in combination with an equilibrium gas–particle partitioning model to predict the SOA concentration. The equilibrium model accounts for non-ideal mixing in liquid phases, including liquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature, Intramolecular, and Non-additivity effects) model for pure compound vapour pressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD) chamber experiments, conducted at the European Organization for Nuclear Research (CERN) for isoprene ozonolysis cases, were used to aid in parameterizing the SOA yields at different atmospherically relevant temperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organic surrogate species is introduced in the coupled modelling system. The model predicts a single, homogeneously mixed particle phase at all relative humidity levels for SOA formation in the absence of any inorganic seed particles. In the presence of aqueous sulfuric acid or ammonium bisulfate seed particles, the model predicts LLPS to occur below ∼ > 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity ; volume:22 ; number:1 ; year:2022 ; pages:215-244 ; extent:30
Atmospheric chemistry and physics ; 22, Heft 1 (2022), 215-244 (gesamt 30)
- Urheber
-
Amaladhasan, Dalrin Ampritta
Heyn, Claudia
Hoyle, Christopher R.
El Haddad, Imad
Elser, Miriam
Pieber, Simone M.
Slowik, Jay G.
Amorim, Antonio
Duplissy, Jonathan
Ehrhart, Sebastian
Makhmutov, Vladimir
Molteni, Ugo
Rissanen, Matti
Stožkov, Ju. I.
Wagner, Robert
Hansel, Armin
Kirkby, Jasper
Donahue, Neil M.
Volkamer, Rainer
Baltensperger, Urs
Gysel Beer, Martin
Zuend, Andreas
- DOI
-
10.5194/acp-22-215-2022
- URN
-
urn:nbn:de:101:1-2022011304291641459183
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
15.08.2025, 07:32 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Amaladhasan, Dalrin Ampritta
- Heyn, Claudia
- Hoyle, Christopher R.
- El Haddad, Imad
- Elser, Miriam
- Pieber, Simone M.
- Slowik, Jay G.
- Amorim, Antonio
- Duplissy, Jonathan
- Ehrhart, Sebastian
- Makhmutov, Vladimir
- Molteni, Ugo
- Rissanen, Matti
- Stožkov, Ju. I.
- Wagner, Robert
- Hansel, Armin
- Kirkby, Jasper
- Donahue, Neil M.
- Volkamer, Rainer
- Baltensperger, Urs
- Gysel Beer, Martin
- Zuend, Andreas