Arbeitspapier

Estimating the materials balance condition: A stochastic frontier approach

In this paper we propose a stochastic formulation of the materials balance condition which imposes physical constraints on production technologies. The estimation of the model involves a composed error term structure that is commonly applied in the literature on stochastic frontier analysis of productive efficiency. Moreover, we discuss how OLS, maximum likelihood and Bayesian methods can be used to estimate the proposed model. In contrast to previous approaches our model allows to estimate the physical limitations to production possibilities in the presence of statistical noise and depends on substantially weaker data requirements. We demonstrate the applicability of our new approach by estimating the materials balance condition for SO2 and CO2 using a sample of fossil-fueled power plants in the United States.

Sprache
Englisch

Erschienen in
Series: Darmstadt Discussion Papers in Economics ; No. 226

Klassifikation
Wirtschaft
Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
Model Construction and Estimation
Energy: General
Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
Thema
Materials balance condition
Abatement efficiency
Stochastic frontier analysis
Laws of thermodynamics
Applied econometrics
Environmental economics

Ereignis
Geistige Schöpfung
(wer)
Hampf, Benjamin
Ereignis
Veröffentlichung
(wer)
Technische Universität Darmstadt, Department of Law and Economics
(wo)
Darmstadt
(wann)
2015

Handle
URN
urn:nbn:de:tuda-tuprints-46990
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hampf, Benjamin
  • Technische Universität Darmstadt, Department of Law and Economics

Entstanden

  • 2015

Ähnliche Objekte (12)