Fast simulation of coronary in‐stent restenosis: A non‐intrusive data‐driven reduced order surrogate model

Abstract: Modeling and simulation of coronary artery disease (CAD) is of great importance for supporting and predicting the outcome of percutaneous coronary intervention (PCI). However, an in silico model generally requires heavy computational resources. An effective reduced order surrogate model is indispensable in this context. This study aims to develop a non‐intrusive data‐driven reduced order surrogate model for coronary in‐stent restenosis (ISR) incorporating anti‐inflammatory drugs embedded in the drug‐eluting stents. The constitutive model includes a detailed multiphysics approach based on partial differential equations (PDEs), which include descriptions of platelet aggregation, growth‐factor release, cellular motility and drug deposition. Dimensionality reduction is carried out based on a 3D convolutional autoencoder, which comprises an encoder and decoder. The former condenses the full‐order solution into a lower‐dimensional latent space, while the latter recovers the full solution from the latent space. Special attention is paid to handle the multidimensional outputs and network architecture.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
Fast simulation of coronary in‐stent restenosis: A non‐intrusive data‐driven reduced order surrogate model ; day:30 ; month:10 ; year:2024 ; extent:8
Proceedings in applied mathematics and mechanics ; (30.10.2024) (gesamt 8)

Urheber
Shi, Jianye
Manjunatha, Kiran
Reese, Stefanie

DOI
10.1002/pamm.202400067
URN
urn:nbn:de:101:1-2410301412005.622381306220
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:19 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Ähnliche Objekte (12)